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1. Introduction. 

The purpose of t h i s  paper i s  t o  give a uni f ied  presenta- 

t i o n  of Liapunov's theory of s t a b i l i t y  t h a t  includes the  c l a s s i c a l  

Liapunov theorems on s t a b i l i t y  and i n s t a b i l i t y  as w e l l  as t h e i r  

more recent extensions. 

beginnings some time ago. It was, however, the  use made of t h i s  

idea  by Yoshizawa i n  [l] i n  his study of nonautonomous d i f f e r e n t i a l  

equations and by Hale i n  [2] i n  h i s  study of autonomous funct ional  

d i f f e r e n t i a l  equations t h a t  caused the  author t o  r e tu rn  t o  t h i s  

subject  and t o  adopt t he  general approach and point  of view of t h i s  

paper. 

by ordinary d i f f e r e n t i a l  equations which demonstrate t he  e s s e n t i a l  

nature  of a Liapunov function and which may be use fu l  i n  appl icat ions.  

Of g rea te r  importance, however, is  the  poss ib i l i t y ,  as already in -  

d ica ted  by Hale 's  r e s u l t s  f o r  functional d i f f e r e n t i a l  equations, 

The idea being exploited here  had i t s  

This produces some new re su l t s  f o r  dynamical systems defined 
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t h a t  these  ideas can be extended t o  more general  c l a s ses  of dynam- 

i c a l  systems. It i s  hoped, f o r  instance,  t h a t  it may be possible  

t o  do t h i s  fo r  some spec ia l  types of dynamicalsystems defined by 

p a r t i a l  d i f f e r e n t i a l  equations. 

In sect ion 2 we present some bas ic  r e s u l t s  f o r  ordinary 

d i f f e r e n t i a l  equations. 

theorem fo r  nonautonomous systems and i s  a modified vers ion of 

Yoshizawa's Theorem 6 i n  [l]. A simple example shows t h a t  t h e  

conclusion of t h i s  theorem i s  the  bes t  possible .  However, when- 

ever t he  l i m i t  s e t s  of solut ions a re  known t o  have an invariance 

property then sharper r e s u l t s  can be obtained. This "invariance 

pr inciple"  explains t h e  t i t l e  of t h i s  paper. It had i t s  o r ig in  f o r  

autonomous and periodic  systems i n  [3] - [SI, although we present 

here improved versions of those results. 

l i shed  an invariance property f o r  almost per iodic  systems and ob- 

t a i n s  thereby a similar s t a b i l i t y  theorem for almost per iodic  

systems. Since l i t t l e  a t t en t ion  has been paid t o  theorems which 

make possible estimates of regions of a t t r a c t i o n  (regions of asymp- 

t o t i c  s t a b i l i t y )  f o r  nonautonomous systems results of t h i s  type are  

included. Section 3 i s  devoted t o  a brief discussion of some of 

Hale's recent r e s u l t s  [2] for autonomous funct ional  d i f f e r e n t i a l  

equations. 

Theorem 1 i s  a fundamental s t a b i l i t y  

Mil ler  i n  [6] has estab- 

2. Ordinary d i f f e r e n t i a l  equations. 

Consider t h e  system 



3 

n+ 1 where x i s  an n-vector, f i s  a continuous function on R 

t o  R and s a t i s f i e s  any one of t h e  conditions guaranteeing unique- 

'ness of solut ions.  For each x i n  Rn we def ine 1x1 = 

(xl + ... + xn) 

d(x,E) = Min [ Ix-yl : y i n  E). 

n 

2 2 3  , and f o r  E a closed s e t  i n  Rn we def ine , 
Since w e  do not wish t o  confine our- 

selves  t o  bounded solut ions,  we introduce t h e  point a t  

define d(x,m) = 1x l - l  . Thus when we  wr i te  E* = E U[m), we s h a l l  

mean d(x,E*) = Min{d(x,E), d(x,m)), I f  x ( t )  i s  a solut ion of 

(l), we say t h a t  x ( t )  approaches E as t - + m  i f  d(x( t ) ,E)  4 9  

as  t --$a. If we can f i n d  such a s e t  E, we have obtained in-  

formation about t he  asymptotic behavior of x ( t )  as  t + 00. The 

b e s t  t h a t  we could hope t o  do i s  t o  f i n d  t h e  smallest  closed s e t  

m and 

R t h a t  x ( t )  approaches as t -00. This set  R i s  ca l l ed  t h e  

pos i t i ve  l i m i t  s e t  of x ( t )  and t h e  poin ts  p i n  R a re  ca l l ed  

t h e  pos i t ive  l i m i t  po in ts  of x ( t ) .  I n  exact ly  the  same way one 

-- 

defines x ( t )  + E  a s  t --f -= , negative l i m i t  s e t s ,  and negative 

l i m i t  points.  This i s  exactly G. D. Birkhoff 's  concept of l i m i t  

s e t s .  A point p i s  a posi t ive l i m i t  point  of x ( t )  i f  and only 

if there  i s  a sequence of times tn approaching 00 as  n -+a and 

such t h a t  x ( t n )  + p as  n 4 o . I n  the  above it may be t h a t  t h e  

maximal i n t e r v a l  of de f in i t i on  of x ( t )  i s  [ 3 , ~ )  . This causes 

no d i f f i c u l t y  s ince i n  the  r e su l t s  t o  be presented here  we need 

only with respect  t o  time t replace mby T. We usual ly  ignore 
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t h i s  poss ib i l i t y  and speak as though our solut ions a re  def'irred on 

[o,w) or (-m,m) . 
i n Let V(t,x) be a C fanct ion O i l  [O,m) x R t o  R, and 

l e t  G be m y  s e t  i n  Rn . We s h a l l  say t h a t  V i s  a Liapunov 

funct ion on G for  equation (1) i f  V(t,x) 2 0 ana. V(t,x) 5 

-W(x) 5 0 for  a l l  t > 0 and a l l  x i n  G where W i s  

continuous on Rii t o  R a d  

We define (c i s  the  closure of G) 
- 

E = (x, W(x) = 0, x i n  G ) .  

The following r e s u l t  i s  then a modified but c lose ly  re -  

l a t e d  version o f  Yoshizawa's Theorem 6 i n  [l]. 

THEOREM 1. If V i s  a Liapunov funct ion on G for equation (l), 

then each solut ion x ( t )  of (1) t h a t  remains i n  G f o r  a l l  

t > to 2 0 approaches E* = E U  (a] as  t +co , provided one of 

t h e  following conditions i s  sa t i s f i ed :  

(i) For each p i n  the re  i s  a neighborhood 1\s of 

p such t h a t  I f ( t , x ) l  i s  bounded f o r  a l l  t > 0 and 

a i l  x i n  N. 

(ti) W i s  C1 and i s  bounded from above o r  below 

along each solut ion which remains i n  G f o r  all 

t > t o 2 0 .  

1 
I 
t 
a 
I 
I 
I 
I 
I 
1 
I 
I 
I 
1 
c 
I 
I 
I 
I 
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If E i s  bounded, then 

f o r  t > t 2 0 e i t h e r  
0 

each solut ion 

approaches E 

Thus t h i s  theorem explains 

5 

of (1) t h a t  remains i n  G 

or 03 as  t + - .  

prec ise ly  the  nature of the  

information given by a Liapunov function. 

r e l a t i v e  t o  a s e t  G defines a s e t  E which under the  conditions 

of t he  theorem contains (locates) a l l  t h e  pos i t i ve  l i m i t  s e t s  of 

solutioils  which f o r  pos i t ive  time remain i n  

applying the  r e s u l t  i s  t o  f ind  "good" Liapunov functions.  

instance,  t he  zero function V =  0 i s  a Liapunov function f o r  tiie 

whole space Rn 

information s ince E = R . It i s  t r i v i a l  but  usefu l  f o r  appl i -  

ca t ions  t o  note t h a t  i f  V, and V, are Liapunov functions on G, 

A Liapunov function 

G. The problem i n  

For 

aiid condition (ii) i s  s a t i s f i e d  but  gives no in-  

n 

then V = V + V2 1 

If E i s  smaller 

Liapunov funct ion 

I L 

i s  a l s o  a Liapunov function and E = E l l E2 . 1 

t h m  e i t h e r  El o r  E2 , -then V i s  a "be t te r"  

than e i t h e r  E or E2 and i s  always a t  l e a s t  as  1 

"good" as e i t h e r  of t h e  two. 

Condition (5) of Theorem 1 i s  e s s e n t i a l l y  the  one used 

by Yoshizawa. 

i s  s a t i s f i e d  and condition (i) i s  not. 

We now look a t  a simple example where condition (ii) 

The example a l so  shows t h a t  

t he  conclusion of t he  theorem i s  t h e  bes t  possible .  Consider 

*2 + p ( t ) ?  + x = 0 where p ( t )  2 6 > 0 . Define 2 V  = x 2 2  + y , 
2 2 

where y = 2 . Then V = -p ( t )y  6 - 6y and V i s  a Liapunov 

2 2 funct ion on R2 Now W = 6y and = 2 6 ~  = - 2 S ( x y  + p ( t ) )  ) 

-26xy. Since all solut ions a r e  evident ly  bounded f o r  all t > 0, 
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condition (ii) i s  s a t i s f i e d .  Here E i s  the  x-axis (y = 0) 

and f o r  each so lu t ion  x ( t ) ,  y ( t )  = 2( t )  + 5 as t + . Noting 

t h a t  t he  equation 

x ( t )  = 1 t e-t , we see t h a t  t h i s  i s  the  b e s t  possible  r e s u l t  with- 

out fur ther  r e s t r i c t i o n s  on p . 

t x + (2 + e )S + x = 0 has a solut ion 

I n  order t o  use Theorem 1 the re  must be some means of 

determinLng which SolEtiOiis remain i n  G . The following corol lary,  

which i s  an obvious consequence of Theorem 1, gives one way of 

doing t h i s  and also provides f o r  nonautonomous systems a method f o r  

estimating regions of a t t r ac t ion .  

Corollary 1. Assume t h a t  there  e x i s t  continuous functions u(x) 

and v(x) on R t o  R such t h a t  U(X) 5 V(t,x) 5 V(X) f o r  all 

t 2 0 . 
4- 

of  Qrl 

containing G+ . If  V i s  a Liapunov f’Jnction on G f o r  (1) and 

the conditions of Theorem 1 

(1) s t a r t i n g  i n  G+ at  any time t 2 o remains i n  G f o r  all 

t > to and approaches E* as t + w e If G i s  bounded and 

Eo = r G  C G+ , then Eo i s  an a t t r a c t o r  and G i s  i n  i t s  

region of a t t r ac t ion .  

n 

+ + 
Define Q7 = {x ; U(X) < v} and l e t  G be a component 

Let G denote the  component of Q = {x ; v(x)  < 71 
11 

are  sa t i s f i ed ,  then each so lu t ion  of 

0 

+ 

I n  general  we know t h a t  i f  x ( t )  i s  a so lu t ion  of 

( l ) - - i n  fac t ,  i f  x ( t >  i s  any continuous funct ion on R t o  R”-- 

then i t s  pos i t ive  l i m i t  s e t  i s  closed and connected. If x ( t )  i s  

bounded, then i t s  pos i t ive  l i m i t  s e t  i s  compact. There are, how- 
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I 
I 
I 
I 
I 

I 
I 
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1 
I 
I 
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ever, spec ia l  c lasses  of d i f f e r e n t i a l  equations where the  l i m i t  

s e t s  of solut ions have an addi t ional  invariance property which 

makes possible  a refinement ot' Theore= 1. m e  f i r s t  of these are 

the  autonomous systems 

a = f ( x )  (3) 

The l i m i t  s e t s  of solut ions of (3) a re  invar ian t  s e t s .  If x ( t )  

i s  defined on [O,m) and i f  p i s  a pos i t ive  l i m i t  point  of x ( t ) ,  

then the  points  on the  solut ion through 

v a l  of de f in i t i on  are  pos i t ive  l i m i t  points  of x ( t ) .  If x ( t )  i s  

boEded for t > 0 , then it i s  defined un [O,mj, i t s  pos i t ive  

l i m i t  s e t  R i s  compact, noneinpty and solut ions through points  

p of R are  defined on (-a,..) ( i o e . ,  R i s  invar ian t ) .  If 

t h e  maximal domain of def in i t ion  of x ( t )  f o r  t > 0 i s  f i n i t e ,  

then x ( t )  has no f i n i t e  posi t ive l i m i t  points:  t h a t  i s ,  i f  t he  

m a x i r r l a l  i jnierval of de f in i l i on  o f  x ( t )  f o r  L > 0 i s  [O,p), 

then x ( t )  + a as  t -+p . As we have sa id  before, we w i l l  always 

speak as  though our solut ions are defined on and it should 

be remembered t h a t  f i n i t e  escape time i s  always a p o s s i b i l i t y  unless  

there  is ,  as  f o r  example i n  Corollary 2 below, some condition t h a t  

ru l e s  it out.  I n  Corollary 3 below, t h e  solut ions might wel l  go t o  

i n f in i t j r  i i i  f i n i t e  time. 

p on i t s  maximal i n t e r -  

(-m,m) 

The invariance property of the  l i m i t  s e t s  of solut ions 

of autonomous systems 

Let V be a C1 function on R t o  R . If G i s  any a r b i t r a r y  

( 3 )  now ena5les us t o  r e f ine  Theorem 1. 

n 
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s e t  i n  Rn , we say t h a t  V i s  a Liapunov function on G f o r  

equation (3) if fl = (grad V). f does not change s ign on G . 
Define E = ( x ; i(x) = 3 , x ir, G 1 , where G i s  ihe 

closure of G . Let M be the  l a r g e s t  invar ian t  s e t  i n  E . M 

w i l l  be a closed s e t .  The fundamental s t a b i l i t y  theorem f o r  

autonomous systems i s  then the following: 

- 

- 

THEORFM 2.  I f  V i s  a Liapunov function on G f o r  ( 3 ) ,  then 

each solut ion x ( t )  of (3) t h a t  remains i n  G f o r  a l l  t > 0 

(t < 0)  approaches M* = M U (m) as t -+ m (t -m).  If M i s  

bounded, then e i t h e r  x ( t )  - + M  o r  x ( t )  + m  as t - + m  (t -m) . 
This one theorem contains a l l  of the  usual  Liapunov l i k e  

theorems on s t a b i l i t y  and i n s t a b i l i t y  of autonomous systems. Here 

however, there  a re  no conditions of def ini teness  fo r  V or  V , 
and it i s  of ten  possible  t o  obtain s t ab i l i t j r  information about a 

system w i t i i  these more general  types of Liapunov functions.  The 

f i r s t  corol lary below i s  a s t a b i l i t y  r e s u l t  which f o r  applications 

has been qui te  usefu l  a id  the  second i l l u s t r a t e s  how one obtains 

infomat ton  on i n s t a b i l i t y .  Cetaev's i n s t a b i l i t y  theorem i s  

s imi la r ly  an immediate consequence of Theorem 2 (see sect ion 3). 

v 

COROLLARY 2.  Let G be a component of Q = ( x ; V(x) < 7 ) . 
Ass-me tliai G i s  bon-ided, V 6 0 on G , and M = M n G c G . 
Then M i s  an a t t r a c t o r  and G i s  i n  i t s  region of a t t r ac t ion .  

I f ,  i n  addition, V i s  constant on the  boundary of Mo , then 

7 
0 -  

0 

1 
1 
1 
I 
I 
I 
1 
I 
I 
I 
1 
I 
I 
1 
I 
1 
1 
I 
I 
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Mo i s  a s t ab le  a t t r ac to r .  

Note t h a t  if Mo consis ts  of a s ingle  point  p , 
then p i s  asymptotically s table  and G provides an estimate of 

i t s  region of asymptotic s t a b i l i t y .  

COROLLARY 3. Assume t h a t  r e l a t ive  t o  (3) t h a t  V > 0 on G 

and on the  boundary of G tha t  V = 0 . Then each solut ion of 

(3) s t a r t i n g  i n  G approaches m as t -+ m (or  possibly i n  

f i n i t e  time). 

There are  a l so  some spec ia l  c lasses  of nonautonomous 

systems where the  l i m i t  s e t s  of  solut ions have an invariance 

property. The simplest of these a re  per iodic  systems (see [ 3 ] ) .  

2 = f ( t , x )  , f ( t  + T,x) = f ( t )  f o r  a l l  t and x . (4) 

Eere i n  order t o  avoid introducing the  concept of a per iodic  

approach of a solut ion of (4) t o  a s e t  and the  concept of a 

per iodic  l i m i t  point  l e t  us confine ourselves t o  solut ions 

of (4) which are  bounded f o r  t > 0 . Let R be the  pos i t ive  

l i m i t  s e t  of such a solut ion x ( t ) ,  and l e t  p be a point  i n  R . 
Then there  i s  a solut ion o f  (4) s t a r t i n g  a t  p which remains i n  

R f o r  a l l  t i n  (-w,oo) ; tha t  i s ,  i f  one s t a r t s  a t  p a t  t he  

proper time the  solut ion remains i n  R f o r  a l l  time. Tnis i s  the  

sense now i n  which R i s  an invariant s e t .  Let V(t,x) be C1 

on R x Rn and periodic i n  t of period T . For an a r b i t r a r y  

s e t  G of Rn we say t h a t  V i s  a Liapunov function - on G f o r  

x ( t )  



10 

f o r  the geriodic system (4) if V does not change s ign f o r  a l l  

t and a l l  x i n  G . Define E = { ( t , x ) ;  V(t ,x) = 0, x i n  3 } 

and l e t  M b e  t h e  union of a l l  solut ions x ( t )  of (4) with the  

property tha t  ( t , x ( t ) )  i s  i n  E f o r  a l l  t . M could be ca l l ed  

" the  l a rges t  invariant  s e t  r e l a t i v e  t o  E". 

following version of Theorem 2 fo r  per iodic  systems: 

One then obtains t h e  

THEOFEM 3. I f  V i s  a Liapunov funct ion on G f o r  t he  per iodic  

system (4), then each solut ion of (4) t h a t  i s  bounded and remains 

I n  G for a l l  t > 0 (t < 0) approaches M as t -+ 00 (t + - 0 ~ ) .  

I n  [6] Mil ler  showed t h a t  the  l i m i t  s e t s  of solut ions 

of almost per iodic  systems have a s imi la r  invariance property and 

from t h i s  he obtains a r e s u l t  qu i te  l i k e  Theorem 3 f o r  almost 

per iodic  systems. 

systems a whole chain of theorems on s t a b i l i t y  and i n s t a b i l i t y  

qui te  similar t o  t h a t  f o r  autonomous systems. For example, one has 

This then y ie lds  f o r  periodic and almost per iodic  

+ COKOLLARY 4. 

l e t  G be a component of Q . Let G be the  compofient of 

Q = { x;  V(t,x) < 11 f o r  some t i n  [O,T] } containing 

i s  bounded, V 5 0 f o r  a l l  t and a l l  x i n  G , and i f  M = 

M fl G C G+, then Mo i s  an a t t r a c t o r  and G i s  i n  i t s  region of 

a t t r ac t ioc .  If V(t,x) = q ( t )  f o r  all t and a l l  x on the  

boundary of Mo , then Mo i s  a s t ab le  a t t r a c t o r .  

Let Qrl = { x; V(t,x) < 7, all t i n  [O,T] } , and 
+ + 

11 
G+ . If G 

0 
7 

+ 

Our l a s t  example of an invariance p r inc ip l e  f o r  ordinary 
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differential equations is that due to Yoshizawa in [l] for "asymp- 

totically autonomous" systems. It is a consequence of Theorem 1 

and results by Markus and Opial (see [l] for references) on the 

limit sets of such systems. A system of the form 

is said to be asymptotically autonomous if (i) g(t,x) -+9 as 

t - + w  uniformly for x in an arbitrary compact set of Rn , 
(ii) J Ih(t,q(t))l dt < w Yor all cp bounded and continuous 

on [O,w) to Rn . The combined results of Markus and Opial then 

W 

0 

state that the positive limit sets of solutions of (3) are in- 

variant sets of k = F(x) . Using this, Yoshizawa then improved 
Theorem 1 for asymptotically autonomous systems. 

It turns out to be useful, as we shall illustrate in a 

moment on the simplest possible example, in studying systems (1) 

which are not necessarily asymptotically autonomous to state the 

theorem in the following manner: 

THEOREM 4. 

known that a solution x(t) of (1) remains in G for t > 0 

If, in addition to the conditions of Theorem 1, it is 

and is also a solution of an asymptotically autonomous system (?), 

then x ( t )  approaches M* = M U {OD) as t + w , where M is the 

largest invariant set of 2 = F(x) in E . 
It can happen that the system (1) is itself asymptotically 

autonomous in which case the above theorem can be applied. However, 



..- 
Aid 

as the  following example i l l u s t r a t e s ,  t he  o r i g i n a l  system may not 

i t s e l f  be asymptotically autonomous but it s t i l l  may be possible  

t o  construct fo r  each solut ion of (1) an asymptotically autonomous 

system (7) which it a lso  s a t i s f i e s .  

Consider again the  example 

? =  y (6) 
y = - x -  P ( t ) Y  , o < s ~ p ( t ) ~  m 

f o r  all t > 0 

Now we have the  addi t iona l  assumption t h a t  i s  bounded from 

above. Let (x( t ) ,  y ( t ) )  be any solut ion of (6). A s  was argued 

previously below Theorem 1, a l l  solut ions a re  bounded and y ( t )  + 0 

as t + Q) . Now (E( t ) ,  y ( t ) )  s a t i s f i e s  k = y , y = 

p ( t )  
- 

-x - p ( t ) y ( t ) ,  and t h i s  system i s  asymptotically autonomous t o  

(") 

E i s  t h e  x-axis  and the  l a r g e s t  invar ian t  s e t  of (*) i n  E i s  t he  

or ig in .  

2 =  y ,  $ =  -x . With the same Liapunov function as  before, 

Thus f o r  (6) the  o r ig in  i s  asymptotically s t ab le  i n  the  

l a rge  

3. Autonomous func t iona l  d i f f e r e n t i a l  equation. 

Difference d i f f e r e n t i a l  equations of t he  form 

2( t )  = f ( t , x ( t ) , x ( t - r ) )  9 r > O  (7) 

have been studied almost as  long as ordinary d i f f e r e n t i a l  equations 

and these as  wel l  as  other types of systems are  of t h e  general  form 
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where x i s  i r i  Rn and x i s  t he  function defined on [ - r , O ]  

by x ( 2 )  = x(t+.r) ,  -r S 2 6 0. Thus xt i s  the  function t h a t  

describes the  pas t  h i s to ry  of the system on the  i n t e r v a l  

and i n  order t o  consider it as an element i n  the  space C of 

contizuous fmc-t ions a l l  defined on the  same i n t e r v a l  [ - r , O ] ,  x, 

i s  taken t o  be the  function whose graph i s  the  t r ans l a t ion  of the  

graph of x on the  i n t e r v a l  [ t - r , t ]  t o  t he  i n t e r v a l  [ - r , O ]  . 
Since such equations have had a long h i s to ry  it seems surpr i s ing  

that; it i s  only within t h e  l a s t  10 years o r  so  t h a t  the  geometric 

theory of ordinary d i f f e r e n t i a l  equations has been successful ly  

ca r r i ed  over t o  funct ional  d i f f e r e n t i a l  equations. 

has demonstrated the effectiveness of a geometric approach i n  ex- 

tending the  c l a s s i c a l  Liapunov theory, including the  converse 

theorems, t o  funct ional  d i f f e r e n t i a l  equations. 

aspects of t h e i r  theory which have yielded t o  t h i s  geometric approach 

can be found i n  the  paper [ g ]  by Hale. 

t o  present Hale's extension i n  [2] of the  r e s u l t s  of Section 2 of 

t h i s  paper t o  autonomous functional d i f f e r e n t i a l  equations 

t 

t 

[t-r,t] 

b 

Krasovskii [8] 

An account of other  

What we wish t o  do here i s  

K =  f ( x )  . t (9) 

It i s  t h i s  extension t h a t  has had so  far the  g rea t e s t  success i n  

studying s t a b i l i t y  propert ies  of t h e  solut ions of systems (9), and 

it i s  possible  t h a t  t h i s  may lead t o  a s imilar  theory f o r  spec ia l  

c lasses  of systems defined by p a r t i a l  d i f f e r e n t i a l  equations. 

With r 4 3 the  space C i s  t he  space of continuous 
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functions cp on [ - r , O ]  t o  Rn with l{cpll = 

m a x  (Icp(~)l ; -r 5 T s 01. Convergence i n  c i s  uniform conver- 

gence on [ - r , O ] .  A function x defined on [ - r , m )  t o  Rn t o  

sa id  t o  be a solut ion of (9) sa t i s fy ing  - the  i n i t i a l  condition cp 

a t  time t = 0 i f  there  i s  an a > 0 such t h a t  %(t) = f (  

f o r  a l l  t i n  [O,a) and x = cp . Remember x = cp means 

X ( T )  = cp(z), -r 5 T 5 0. A t  t = 0, k i s  the  r i g h t  hand der iv-  

a t ive .  The existence uniqueness theorems are  qui te  s imilar  t o  

those fo r  ordinary d i f f e r e n t i a l  equations. I f  f i s  l o c a l l y  

Lipschitzian on C, then f o r  each cp i n  C there  i s  one and only 

one solut ion of (9) and the  solut ion depends continuously on cp . 
The solut ion can a l so  be extended i n  C f o r  t > 0 as long as  it 

remains bounded. A s  i n  Section 2, we w i l l  always speak as though 

solut ions a re  defined on [ - r , m ) .  The space C i s  now the  s t a t e  

space of (9) and through each point  cp of C there  i s  the  motion 

o r  flow x s t a r t i n g  a t  cp defined by the solut ion x ( t )  of  (9) 

sa t i s fy ing  a t  time t = 0 the  i n i t i a l  condition c p ;  x 0 5 t <m, 

i s  a curve i n  C which s t a r t s  a t  time t = 0 a t  cp. I n  analogy 

t o  Section 2 with C replacing Rn, xt replacing x ( t ) ,  and 

IIx 1 1  replacing I x ( t ) l ,  we define t h e  dis tance d(xt,E) of xt 

from a closed s e t  E of C t o  be d(x t ,E) = min (llxt-$l! ; $ E E ) .  

The posi t ive l i m i t  s e t  of x 

analogous t o  Section 2.  

we s h a l l  be s a t i s f i e d  here with r e s t r i c t i n g  ourselves t o  motions 

"t ) 

0 0 

t 

t' 

t 

i s  then defined i n  a manner completely 

Because the re  a re  some important differences 

t 



x hoimded f o r  t > 0. One of t he  differences here i s  t h a t  i n  

C closed and bounded s e t s  a r e  not always compact. Another i s  t h a t  

t 

although we have uniqueness of solut ions i n  t he  fu ture  two motions 

s t a r t i n g  from d i f f e ren t  i n i t i a l  conditions can come together i n  

f i n i t e  time t > 0; a f t e r  t h i s  they coincide f o r  t 2 t . (The 

motions define semi-groups and not necessar i ly  groups. ) 
0 0 

Hale i n  [2] has, however, shown t h a t  the  pos i t ive  l i m i t  

s e t s  R of bounded motions x a re  nonempty, compact, connected, 

invar ian t  s e t s  i n  C . Invariance here i s  i n  the  sense tha t ,  i f  

x i s  a motion s t a r t i n g  a t  a point of R,  then there  i s  an exten- 

s ion  onto (-w,-r]  such t h a t  x ( t )  i s  a solut ion of (9) f o r  a l l  

t 

t 

t i n  (-m,w) and x remains i n  R f o r  a l l  t . With t h i s  

r e s u l t  he i s  then able t o  obtain a r e s u l t  which i s  s imilar  t o  

t 

Corollary 1 of Section 2. 

For cp E C l e t  x (cp) denote the  motion defined by (9) t 
s t a r t i n g  a t  cp . For V a continuous function on C t o  R def ine 

V and QR by 
1 - 

+ ( c p )  = lim 7 rv(xT(cp))-v(cp)l. 
T - + *  

and 

THEOREM 3 .  If V i s  a Liapunov function on G f o r  (9) and x i s  

a t r a j e c t o r y  of (9) which remains i n  G and i s  bounded f o r  t > 0, 

then x + M  as t + 00 . 

t 

t 
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Hale has a l so  given the  following more usefu l  version 

of t h i s  r e su l t .  

COROLLARY 5 .  Define Q = ( ~ p ;  V(cp) < v ]  and l e t  G be Q or  

a component of Q . Assume t h a t  V i s  a Liapunov function on 

G f o r  (9) and t h a t  e i t h e r  (i) G i s  bounded o r  (iii) [ c p ( O ) [  i s  

bounded for cp i n  G . Then each t r a j e c t o r y  s t a r t i n g  i n  G 

approaches M as t + 00 . 

v v 
v 

The following i s  an extension of Fetaevls i n s t a b i l i t y  

theorem. 

i n  [2] ,  which should have s t a t ed  "V(cp) > 0 on U when cp # 0 

and V ( 0 )  = 0'' and a t  the  end 'I... i n t e r s e c t  the  boundary of 

C . . . ' I .  This i s  c l ea r  from h i s  proof and i s  necessary s ince he 

wanted t o  generalize the  usual  statment of Cetaev's theorem t o  in -  

clude the  p o s s i b i l i t y  t h a t  t he  equilibrium point  be ins ide  

wel l  as on i t s  boundary. 

This i s  a somewhat s implif ied version of Hale 's  Theorem 4 

Y 
Y 

U as 

COROLLARY 6. Let p e C be an equilibrium point  of (9) contained 

i n  the  closure of an open s e t  U and l e t  N be a neighborhood of 

p . Assume t h a t  (i) V i s  a Liapunov funct ion on G = U f' N, 

(ii) M n G i s  e i t h e r  t he  empty s e t  or  p, (5%:) V(cp) < 11 on G 

when cp # p9 and (iv) V(p)  = 7 and V(cp) = 7 on t h a t  p a r t  of 

t h e  boundary of  G ins ide  N. Then p i s  unstable.  I n  f a c t ,  if 

No i s  a 5ourided neighborhood of p properly contained i n  N then 

each t r a j ec to ry  s t a r t i n g  a t  a point  of Go = G fl No other than p 

leaves No i n  f i n i t e  time. 

I 
1 
I 
1 
1 
I 
I 
I 
I 
I 
1 
1 
1 
I 
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Proof. 

t r a j e c t o r y  s t a r t i n g  ins ide  

e i t h e r  leave 

Conditions (i) and ( iv )  imply t h a t  it cannot reach o r  approach t h a t  

p a r t  of t h e  boundary of Go inside No nor can it approach p 

as t + m . Now (ii) s t a t e s  t h a t  there  are  no points  of M on 

t h a t  p a r t  of t he  boundary of No ins ide  G . Hence each such 

t r a j e c t o r y  must leave No i n  f i n i t e  time. Since p i s  e i t h e r  i n  

the  i n t e r i o r  o r  on the  boundary of 

contains such t r a j e c t o r i e s ,  and p i s  therefore  unstable.  

By the  conditions of the coro l la ry  and Theorem 6 each - 
a t  a point  other than p must Go 

approach i t s  boundary o r  approach p . 
GO, 

G, each neighborhood of p 

I n  [2] it was shown t h a t  t he  equilibrium point  cp = 0 of 

R ( t )  = a x  3 (t) + bx 3 (t-r) 

was unstable if a > 0 and Ibl < I a1 . Using the  same Liapunov 

funct ion and Theorem 6 we can show a b i t  more. With 

4a -r 

4 t 

4a t-r 
V(X,) = - - (t) + $ .I xb(e)ae 

and 

which i s  nonpositive when (negative d e f i n i t e  with r e -  

spect t o  cp(0) and cp(-r)); t h a t  is ,  V i s  8 Liapimov funct ion 

c,n C and E = ( c p ;  cp(0) = cp(-r) = O} . Therefore M i s  simply 

the  n u l l  function cp = 0 . If' a > 0, t h e  region G = { c p ;  V(cp) < 0) 

I bl < 1 a1 
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i s  nonempty, and no t r a j e c t o r y  s t a r t i n g  i n  G can have cp = 0 as 

a pos i t ive  l i m i t  point  nor can it leave G . Hence by Theorem 5 

each t r a j ec to ry  s t a r t i n g  i n  G must be unbounded. Since cp = 3 

i s  a boundary point  of G, it is unsk;i'!)l.?. It i s  a l so  e a s i l y  seen 

[2] t h a t  if a < 0 and lbl < 1 a i ,  then cp = 0 i s  asymptotically 

s t ab le  i n  the  la rge .  

I n  [2] Hale has a l so  extended t h i s  theory f o r  systems 

with i n f i n i t e  l ag  

of s ign i f i can t  examples of t h e  appl icat ions of t h i s  theory. 

(r = m), and i n  t h a t  same paper gives a number 

I 
I 
1 
1 
1 
I 
I 
I 
I 
1 
1 
1 
1 
I 
I 
1 
1 
1 
I 
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